快捷搜索:

海绵陶瓷像棉花糖5519威尼斯官方网站,海绵陶瓷

一个由中国科学家率领的研究团队成功开发出一种超轻质新型陶瓷材料,不仅具备传统陶瓷材料耐高温、隔热好等优点,而且如同海绵一样富有柔性和弹性,有望应用于航空航天、电子信息等领域。

中国科学家成功研制“海绵陶瓷”

一个由中国科学家率领的研究团队成功开发出一种超轻质新型陶瓷材料,不仅具备传统陶瓷材料耐高温、隔热好等优点,而且如同海绵一样富有柔性和弹性,有望应用于航空航天、电子信息等领域。相关论文发表于美国《科学》杂志子刊《科学进展》上。论文第一作者、加利福尼亚大学戴维斯分校博士后研究员斯阳对记者说,与传统陶瓷气凝胶的珠链状纳米颗粒结构不同,新材料在纤维冷冻成型技术的作用下,具有独特的纤维状腔壁结构。

陶瓷以耐高温而闻名,但致命的缺点是一旦形状发生变化就会破裂。中外科学家利用陶瓷纳米纤维制备出一种海绵状新材料,不仅超轻、耐热,其制备过程也快速经济,有望用于制作消防服和水净化等领域。相关研究成果发表在近期的《科学·进展》上。

相关论文27日发表于美国《科学》杂志子刊《科学进展》上。论文第一作者、加利福尼亚大学戴维斯分校博士后研究员斯阳对新华社记者说,与传统陶瓷气凝胶的珠链状纳米颗粒结构不同,新材料在纤维冷冻成型技术的作用下,具有独特的纤维状腔壁结构。

5519威尼斯官方网站,新华社华盛顿4月27日电一个由中国科学家率领的研究团队成功开发出一种超轻质新型陶瓷材料,不仅具备传统陶瓷材料耐高温、隔热好等优点,而且如同海绵一样富有柔性和弹性,有望应用于航空航天、电子信息等领域。

论文通讯作者,清华大学材料学院副教授伍晖6月11日接受科技日报记者采访时表示,纳米纤维一般通过静电纺丝或3D激光打印等工艺进行生产,前者不适合于将纳米纤维组建成为三维结构;后者则耗时较多,成本较高。研究团队用廉价高效的气流纺丝技术,通过高速的气流将陶瓷前驱体溶液拉伸为纳米纤维,并用一种多孔收集器将其收集组建成为海绵结构,加热除掉前驱体中的高分子与溶剂,以得到一个由相互缠结的陶瓷纳米纤维组成的海绵。

斯阳介绍说,这些纤维状腔壁包含大量尺寸为100纳米到1微米的网孔,其中陶瓷纤维紧密粘结,在外力作用下可快速形变和复原。

相关论文27日发表于美国《科学》杂志子刊《科学进展》上。论文第一作者、加利福尼亚大学戴维斯分校博士后研究员斯阳对新华社记者说,与传统陶瓷气凝胶的珠链状纳米颗粒结构不同,新材料在纤维冷冻成型技术的作用下,具有独特的纤维状腔壁结构。

这种新型材料可以像棉花糖一样又轻又软,即便被压扁仍可以反弹回近似原始形态,且不会被损坏。

研究团队发现,纤维状的陶瓷结构中,纤维直径为200纳米,在1100摄氏度高温下仍可压缩回弹;经过多达500次压缩后,塑性形变仅为12%。

斯阳介绍说,这些纤维状腔壁包含大量尺寸为100纳米到1微米的网孔,其中陶瓷纤维紧密粘结,在外力作用下可快速形变和复原。

论文共同第一作者,电子科技大学博士生王浩伦表示,在实验室测试中,将一片花瓣放置在由二氧化锆陶瓷制成的7毫米厚的海绵上,海绵底部以400℃加热10分钟后,花瓣仍完好无损,而用普通结构的陶瓷材料来隔热的话,花瓣早就焦了。因此,该材料可用于制作消防服等耐热柔性绝缘材料。

此外,这种新型陶瓷的重量显着降低,最低密度可达每立方厘米0.15毫克;而且具有超高孔隙率和曲折网孔通道,可减少热对流效应,隔热性能优异。

研究团队发现,纤维状的陶瓷结构中,纤维直径为200纳米,在1100摄氏度高温下仍可压缩回弹;经过多达500次压缩后,塑性形变仅为12%。

此外,这种海绵陶瓷利用其多孔性与光催化活性,当其被有机污染物染色时,在光照下仅用15分钟就可以将污染物分解掉。王浩伦称,当代水过滤技术中所用的过滤材料大多是粉末状,难以重复利用,这种新型材料则具有便于回收和重复使用的优势。

论文通讯作者、中国东华大学纺织材料学研究员丁彬认为,新型陶瓷未来可用于开发电磁屏蔽材料、柔性电子器件、生物组织工程支架和高性能催化剂载体等。

此外,这种新型陶瓷的重量显著降低,最低密度可达每立方厘米0.15毫克;而且具有超高孔隙率和曲折网孔通道,可减少热对流效应,隔热性能优异。

论文通讯作者、中国东华大学纺织材料学研究员丁彬认为,新型陶瓷未来可用于开发电磁屏蔽材料、柔性电子器件、生物组织工程支架和高性能催化剂载体等。

本文由5519威尼斯官方网站发布于5519威尼斯手机版,转载请注明出处:海绵陶瓷像棉花糖5519威尼斯官方网站,海绵陶瓷

TAG标签:
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。